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ABSTRACT
Calibration is performed in eye-tracking studies to map raw model
outputs to gaze-points on the screen and improve accuracy of gaze
predictions. Calibration parameters, such as user-screen distance,
camera intrinsic properties, and position of the screen with re-
spect to the camera can be easily calculated in controlled offline
setups, however, their estimation is non-trivial in unrestricted, on-
line, experimental settings. Here, we propose the application of
deep learning models for eye-tracking in online experiments, pro-
viding suitable strategies to estimate calibration parameters and
perform personal gaze calibration. Focusing on fixation accuracy,
we compare results with respect to calibration frequency, the time
point of calibration during data collection (beginning, middle, end),
and calibration procedure (fixation-point or smooth pursuit-based).
Calibration using fixation and smooth pursuit tasks, pooled over
three collection time-points, resulted in the best fixation accuracy.
By combining device calibration, gaze calibration, and the best-
performing deep-learningmodel, we achieve an accuracy of 2.580−a
considerable improvement over reported accuracies in previous on-
line eye-tracking studies.
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1 INTRODUCTION
Eye-tracking is a widely used experimental method across dis-
ciplines spanning psychology, neuroscience, industrial engineer-
ing, marketing/advertising, sport sciences, computer science, etc.
[Duchowski, 2002]. Over the last few decades, the method has seen
a significant surge in its application, along with huge advancements
in the technology applied for tracking eye movements, from earlier
galvanometric methods using electrodes placed around the eye
[Mowrer et al., 1935], to modern computer vision methods that
capture eye movements from eye/face images [Cheng et al., 2021].
A recent trend of webcam-based eye-tracking has contributed sub-
stantially to making eye-tracking more accessible and affordable.

The possibility of recording eye movements from any webcam
enabled device allows researchers to sample global populations
and replicate results cross-culturally, in an economical and time-
efficient manner. Webcam-based gaze prediction methods have
seen great improvements recently with the application of deep
learning [Zhang et al., 2015; Krafka et al., 2016; Fischer et al., 2018;
Park et al., 2019]. Webcam eye-tracking has also been applied as a
real-time, web-browser-based solution for analyzing web brows-
ing behavior [Papoutsaki et al., 2016; XLabsGaze, 2016], collecting
large-scale visual saliency data [Xu et al., 2015], or running online
studies [Semmelmann and Weigelt, 2018]. While the application
of webcam eye-tracking is increasing at a rapid pace, a compre-
hensive review of methods, best practices, and data analyses from
these low resolution eye-trackers is yet to be done. Such research
is particularly relevant for the reliable and replicable application
of webcam eye-tracking in online studies. Reviews and compar-
isons for lab-based eye-trackers [Carter and Luke, 2020; Ehinger
et al., 2019] exist in abundance; however, they are not directly
applicable for webcam-based methods due to differences in the
gaze-tracking algorithms (model-based vs appearance based), sam-
pling frequency (100–1000 Hz vs 15-30 Hz), and added noise in
unrestricted webcam recordings. Moreover, rigorous comparisons
of different calibration procedures and strategies are highly useful
in designing eye-tracking studies and are not readily available for
emerging low-resolution, webcam-based eye-tracking methods.

With a less restrictive set up, one critical component of webcam
eye-tracking during online experiments is the calibration routine.
Calibration is required to project model gaze predictions to 2D gaze
points on the screen. This mapping relies on setup-based parame-
ters, such as user-screen distance, camera intrinsic parameters and
the monitor-camera pose relationship, which could be estimated
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by intricate procedures like Rodrigues et al. [2010]’s mirror-based
method for screen calibration and OpenCV’s checkboard-pattern
method for camera calibration [Bradski, 2000]. Such calculations
are typically done by the experimenter while setting up an in-lab
apparatus; however, they would require excessive customization
of the procedure, and participant co-operation, to be implemented
in online setups. We, therefore, suggest alternatives to estimate
these parameters in online studies (see sections 2.5.1 and 2.5.2). In
addition, we compare different gaze calibration strategies, based
on calibration data size, collection time (beginning, middle or end
of the study), and calibration task (fix-point and smooth-pursuit).
Analysis of these strategies reveal interesting insights that one
should consider when designing online eye tracking studies.

Our online experiment collected webcam recordings of partici-
pants performing a battery of standard eye-tracking tasks, coupled
with multiple iterations of calibration trials. The recordings were
later processed offline through the gaze estimation models to esti-
mate gaze predictions. This approach allows a modular and flexible
comparison of multiple models and calibration strategies on the
same input (sequential video frames). Moreover, by reducing the
computation load of real-time gaze prediction, we aim to tackle the
inconsistent temporal resolution experienced in previous online
eye-tracking studies [Semmelmann and Weigelt, 2018]. We applied
webcam-based eye-tracking, utilizing state-of-the-art deep learning
methods [Zhang et al., 2015; Park et al., 2019; Zhang et al., 2020] for
appearance-based gaze estimation. These methods predict eye gaze
vectors from the recorded video frames, which are then calibrated
to gaze points on the 2D stimulus-presentation plane. Since these
deep learning models were pre-trained on a curated database, our
calibration procedure also aids in correcting for personal appear-
ance of participants and physical setup assumptions. Below, we
report the first of a series of planned analyses [Saxena et al., 2021]
to evaluate the application of deep learning for online eye-tracking,
across a battery of tasks and dependent measures.

2 EXPERIMENTAL METHOD
2.1 Pre-registration
The study procedure was pre-registered prior to any human ob-
servation, and prior to the full collection of data, together with
an addendum specifying updates on defining measurement noise
to optimize recordings [Saxena et al., 2021]. All ethical approvals,
participation criteria, and general procedures can be found in detail
there.

2.2 Participants
A total of 72 participants completed the online study. Data for 31
participants had to be excluded based on fps and face detection
rates (see Saxena et al. [2021] for a detailed report on the exclusion
criteria). The final data consisted of 41 participants (12 male and
29 female participants), aged 20 to 33 years (M = 26, SD = 3). A
majority of the participants reported having normal vision (30 of 41)
and identified as students (34 of 41). Participants were not allowed
to wear glasses while performing the experiment; use of contact
lenses was allowed.

2.3 Experiment Platform
The online experiment platform LabVanced [Finger et al., 2017]
was used to present the stimuli and record participant responses
and webcam videos. The experiment was performed in full-screen
mode. All tasks were designed in an arbitrary coordinate system
of frame units where 1 visual degree = 54.05 fu (frame units). To
allow compatibility with different screen sizes, device calibration
(see section 2.5.1) was performed before starting the study and
stimulus presentation was fixed to a presentation frame size of
29.6° x 16.65° (1600 x 900 fu), centered on the screen. Participation
was therefore only possible with a laptop screen meeting that size
criterion. Time events were recorded as UNIX timestamps and later
mapped to video frame numbers using constant fps (frames per
second) calculated from video parameters.

2.4 Gaze Tracking Models
We selected three deep learning methods that have each reported
state-of-the-art results on gaze-tracking datasets collected in-the-
wild: 1) the MPIIGaze [Zhang et al., 2015] model that was among the
first attempts to tackle appearance-based gaze estimation with Con-
vNets 2) the FAZE model by Park et al. [2019] that proposed meta-
learning to train an adaptable gaze estimator and 3) the ETHXGaze
[Zhang et al., 2020] model that was trained on a high-quality, large-
scale dataset collected under extreme head pose and gaze variation.
Open-sourced Pytorch implementations1 2 3 of all three models
were used with customized inference and analysis scripts to adapt
to the format of data collected from the online experiment. Im-
age pre-processing steps, (histogram equalisation, normalisation,
scaling, etc.), facial keypoints detection, and data normalization as
proposed in [Sugano et al., 2014; Zhang et al., 2018], were applied
as defaults. During inference, we assumed a single face in all video
frames and discarded frames where no faces were detected. The
FAZE model applies on a few-shot fine-tuning procedure, in addi-
tion to gaze-calibration. To ensure direct comparison with the other
twomodels, and to keep consistent inference steps for all three mod-
els, the baseline pre-trained model was used without fine-tuning.
While this might affect the accuracy of final gaze predictions, it
should not interfere with judging the effect of calibration strategy,
which is the focus of interest in this study.

2.5 Tasks
2.5.1 Device Calibration. Device calibration ensures a fixed size
presentation frame over varying screen sizes of different partic-
ipants and allows to robustly estimate the participant’s distance
from the screen. This distance is utilized by the gaze prediction
models to normalize face images [Sugano et al., 2014; Zhang et al.,
2018]. Screen size parameters and participant-screen distance are
also required to project the predicted gaze vectors (pitch and yaw)
from the deep learning models to 2D points and to calculate visual
angles.

For screen-size calibration (Fig. 1A, left), participants were re-
quired to place a standard-sized ID card (85.60 × 53.98 mm) against
the screen, and resize the displayed reference image until it was

1https://github.com/hysts/pytorch_mpiigaze
2https://github.com/NVlabs/few_shot_gaze
3https://github.com/xucong-zhang/ETH-XGaze

https://github.com/hysts/pytorch_mpiigaze
https://github.com/NVlabs/few_shot_gaze
https://github.com/xucong-zhang/ETH-XGaze


Towards efficient calibration for webcam eye-tracking in online experiments ETRA ’22, June 08–11, 2022, Seattle, WA, USA

Figure 1: Types of calibration used in the experiment. A. Device calibration procedures used to estimate the screen size (left)
and distance (right) of participants. B. Procedures for calibrating participants’ gaze location. B, left: Fix-point calibration. The
target “E” (black) occurred randomly in one of four orientations (up, down, left, right) at one of 16 possible locations. B, right:
Pursuit calibration. The targetmoved in a rectangular trajectory, indicated by the dotted path (path not visible to participants).

the same size as the card. Since the physical dimensions of the card
and pixel resolution of the image are known, the procedure allows
to calculate the pixel density per mm for a display, and provides a
pixel-to-mm conversion factor.

For distance calibration (Fig. 1A, right), we implemented the
blind spot distance estimation task [Li et al., 2020], which leverages
the fact that the human eye blind spot is located at a relatively
consistent angle (α ). The distance of a participant can be estimated
using simple trigonometric calculations given α and the correspond-
ing distance projected on screen. The task consisted of a fixed black
square and a moving red circle that swept from right to left in the
horizontal direction. Participants were instructed to sit at a distance
of 50 cm from the screen, fixate on the black square with their right
eye closed, and respond as soon as they perceived that the red circle
disappeared. Participant responses were averaged over 5 repetitions
with α = 13.5°. If participants were estimated to be seated +/- 3.5
cm away from the required 50 cm distance, they were instructed to
change their distance accordingly and the procedure was repeated.

2.5.2 Gaze Calibration. We customized and adapted two calibra-
tion methods (fix-point and smooth-pursuit) in our online ex-
periment (Figure 1B). Fix-point calibration collects paired-data
(recorded webcam frame and gaze target position) by presenting a
sequence of evenly spread fixation points on the screen, whereas
smooth-pursuit calibration presents a gradually moving target to be
tracked by the participant’s gaze. To ensure improved data quality,
implicit attention detection mechanisms were integrated in both
methods. Fix-point calibration provides a strict check for partici-
pants’ fixation on the displayed target by validating their responses,
while smooth-pursuit calibration filters data samples by calculating
the correlation between gaze predictions and the moving target tra-
jectory. We used the collected data to fit a second-order polynomial
function which was chosen based on the calibration comparisons
done by Harezlak et al. [2014].

In the fix-point calibration task (Fig. 1B, left), a stationary target
(letter “E”) occurred randomly across an evenly spread 4x4 grid on
the screen. The target appeared in one of four possible orientations
(up, down, left, and right) and participants were instructed to press
the associated arrow key corresponding to the displayed orientation.
The size and contrast of display required participants to make a
saccade to the target and fixate it for correct identification. Target
position was updated only when a correct response was registered.
The last 10 frames recorded before correct keystrokes for each

fixation target were used to fit the calibration model. The task
ended after each of the 16 positions was fixated once.

In the smooth-pursuit calibration (Fig. 1B, right), participants
followed a moving target with their gaze. A rectangular trajectory
for target movement was chosen, as it was shown to be highly
efficient in previous studies [Bace et al., 2020; Pfeuffer et al., 2013;
Hassoumi et al., 2019]. Predicted gaze coordinates were compared
over a moving window with the coordinates of the target by cal-
culating Pearson’s product-moment correlation and thresholding
over a limit to check if eye movements followed the moving target.
The size of the moving window (15 frames) and threshold limit (0.2)
were chosen based on the analysis by Vidal et al. [2013].

2.5.3 Fixation Task. Participants completed a battery of tasks. De-
tails about all tasks can be found in our pre-registration [Saxena et
al., 2021]. In the current paper, we focus solely on results from the
fixation task to assess the accuracy of different calibration strategies
because this task required the most spatial precision of all tasks in
the battery.

The fixation task was an online adaptation of the small-grid
task by Ehinger et al. [2019]. In the task, a fixation target appeared
randomly at one of 13 points chosen from a 7 x 7 grid, equally
spaced across -6.2° to 6.2° visual degrees vertically and -11.1° to 11.1°
horizontally. Participants had to fixate the target and keep fixating
until it moved to a new location. They indicated the initiation of
the fixation by a mouse click. Following the mouse click, the target
remained stationary for 2500 ms before moving to the next location.
A trial consisted of the target appearing once in all 13 locations, in
random order, with each block starting and ending in the central
position. Participants completed a total of 10 trials of this task
and one additional practice trial that was discarded from further
analyses.

2.6 Procedure
Data collection started with giving informed consent. Then, device
calibration (screen and distance calibration tasks) was performed
(Fig. 1A). The experimental part consisted of two blocks, created
by equally splitting the number of trials for each task in the bat-
tery of eye-tracking tasks (for a full description see Saxena et al.
[2021]). The sequence of experimental tasks was balanced between
participants and kept constant for the two blocks. Gaze calibration
procedures (Fig. 1B) were performed before (beginning) and after
the first task block (middle), and again after the second task block
(end). Each calibration block consisted of randomized single trials
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Figure 2: Fixation task predictions from the FAZE model, using Beg+Mid+End calibration samples and the E+SP calibration
routine. Crosses (+) represent the location of displayed fixation targets on screen. Dots and ellipse axes represent the mean
and standard deviation in x and y directions, respectively, of predicted fixation points, over all 41 participants.

of both fix-point and smooth pursuit calibration. In the current
paper, we only report results with respect to calibration and the
fixation task.

2.7 Data Treatment
We analyzed the effect of gaze-tracking model and calibration strat-
egy on the fixation task accuracy. All video frames were resized
to a 640x480 resolution and processed sequentially by each model.
Intrinsic camera parameters were approximated based on image
resolution. Camera placement was assumed to be in the top-center
of the screen – a requirement confirmed by participants prior to
beginning the online experiment. These parameters were used to
geometrically map the model outputs in normalized space to 2D
points on the screen coordinate system, which were then corrected
following a personal gaze calibration procedure for each participant.
The calibration models were trained using data from calibration
trials and evaluated on their prediction accuracy for the fixation
task. Accuracy for the fixation task refers to the offset between the
displayed target position and the estimated fixation position from
gaze predictions. We estimated the fixation point as the median of
calibrated gaze predictions over a fixed duration of 2500 ms and
calculated offsets as the Euclidean distances between presented
targets and estimated fixation points. The distances were calculated
in presentation frame units and converted to visual angles using
a conversion factor (see 2.3). The final scores were aggregated by
calculating 20% winsorized average values, first over all 13 points,
then over the 10 fixation trials.

3 RESULTS
In Figure 2 we provide an example of the results from one of the gaze
prediction models. It can be seen that fixation accuracy decreases
from center to periphery, likely because calculating fixation location
is more error-prone when the eyeball turns relative to a central
camera – an effect well-documented in infra-red camera based
eye-tracking studies.

3.1 Effect of Calibration Sample Size
We compared the difference in fixation accuracy when calibration
data of different sizes were used, drawn from the three-time points
of recording, referred to as beginning (Beg), beginning+middle
(Beg+Mid), beginning+middle+end (Beg+Mid+End). These samples
were used to fit the calibration models, and the calibration models
were then used to get final gaze predictions for the fixation task.

We first report a two-factor ANOVA with the factors model
type (MPIIGaze, FAZE, ETHXGaze) and sample size (Beg+Mid+End;
Beg+Mid; Beg). Themain effect of model was not significant, (F(2,80)
= 2.493, p = 0.121, η2 = 0.057); however, the factor sample size
was (F (2,80) = 24.423, p < 0.001, η2 = 0.008). The factors did not
interact (F (4,160) = 1.833, p = 0.190, η2 = 0.001). Even though Figure
3A indicates that FAZE resulted in the best accuracy (smallest
deviation), followed by MPIIGaze, followed by ETHXGaze, this
tendency was not significant. To explore the main effect of sample
size, we calculated post-hoc t-tests. Increasing the sample size by
adding the Mid calibration block to the Beg, improved accuracy,
(Beg and Beg+Mid: t(40) = 4.894, p < 0.001), as did adding the End
calibration: Beg+Mid and Beg+Mid+End: t(40) = 2.503, p = 0.049,
Beg and Beg+Mid+End: t(40) = 5.401, p < 0.001. See Figure 3A.

3.2 Effect of Calibration Time
Based on the sample size analysis (section 3.1), we selected the
Beg+Mid+End sample for further analyses, as it provided minimum
calibration error (maximum accuracy). The calibration strategy of
selecting all calibration blocks (Beg+Mid+End) together was com-
pared with a block-specific (Blockwise) strategy in which single
calibration trials were temporally assigned to the following experi-
mental block. That is, the beginning calibration sample was used to
predict fixation performance in the first task block, and the middle
calibration for the second. A two-factor ANOVA with the factors
model type (MPIIGaze, FAZE, ETHXGaze) and calibration strat-
egy (Beg+Mid+End and Blockwise) showed no significant effect of
model type (F(2,80) = 2.489, p = 0.121, η2 = 0.057) and no interaction
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Figure 3: Mean error (in visual degrees; less error = better accuracy) for the three deep learning models (MPIIGaze, FAZE,
ETHXGaze; colored bars), using different calibration strategies. Error bars represent the variability between participants. A.
Fixation accuracies for the three different sample sizes of calibration data (beginning, beginning + middle, and beginning +
middle + end). B. Comparison of the best strategy fromA (Beg+Mid+End) to a blockwise (i.e., temporally contingent) calibration
strategy. C. Comparison of calibration task type (fixation task (E) vs. smooth pursuit task (SP) vs. E+SP).

effects (F(2,80) = 0.393, p = 0.601, η2 < 0.001). The main effect of
calibration strategy was significant (F(1,40) = 57.544, p < 0.001, η2
= 0.010). Fixation accuracy was higher when using Beg+Mid+End

as compared to using the Blockwise calibration strategy, t(40) =
7.586, p < 0.001. See Figure 3B
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3.3 Effect of Calibration Task
We proceeded with the Beg+Mid+End calibration sample and
checked for the effect of calibration task on fixation accuracy (fix-
point calibration on the letter E: E, and smooth pursuit: SP). Fixation
trials were evaluated using calibration data from the two calibration
tasks separately (E, SP) and pooled (E+SP). We analyzed the data
again by the two-factor ANOVA, with model (MPIIGaze, FAZE, and
ETHXGaze) as one factor and calibration type (E, SP, E+SP) as the
other. The main effect of model was not significant, (F(2,80) = 2.657,
p = 0.110, η2 = 0.060), but that of calibration strategy was, (F(2,80)
= 9.038, p = 0.001, η2 = 0.002). The factors did not interact, (F(4,160)
= 1.883, p = 0.184, η2 = 0.001). Post-hoc t-tests comparing different
calibration strategies showed a significant difference between E
and E+SP, (t(40) = 4.417, p < 0.001), as well as between SP and E+SP
(t(40) = 3.583, p = 0.003), meaning the combined E+SP strategy was
better than either strategy alone. There was no significant differ-
ence between E and SP calibration (t(40) = 1.371, p = 0.534). Results
are plotted in Figure 3C.

4 DISCUSSION
Our results are highly informative for the practical usage of deep
learning for web-based eye-tracking and demonstrate a clear im-
provement over existing methods for online eye-tracking with a
mean error of around 2.6 visual degrees, in comparison to existing
tools such as WebGazer’s 4.170. Given the computational limita-
tions of real-time model inference in web browsers, our approach
of splitting data collection from model processing allows the use
of more complex and accurate eye-tracking models. Comparing to
high-speed video-based infra-red eye trackers, such a deviation is
arguably big (Eyelink1000: 0.57° and Pupil Core: 0.82° winsorized
mean error in the same fixation task [Ehinger et al., 2019]). How-
ever, for taking the lab into the wild, using webcam eye-tracking in
an unsupervised online experiment, we were surprised by the high
accuracy of ∼ 2.6°. Such deviation means that a variety of experi-
mental paradigms can be conducted online. Knowing the critical
deviation, future experiments can be set up accordingly by taking
it into account when selecting and placing stimuli and defining
regions of interest.

For researchers interested in applying these methods, we wish
to highlight the importance of the distance and screen calibration
strategies we have proposed here. For online eye-tracking studies,
which provide less control of the surrounding environment, proper
estimates of user distance and screen size are essential to have
reliable conversions between gaze predictions and stimulus presen-
tation coordinates. The device calibration tasks (see section 2.5.1)
robustly calculated these measures and are highly recommended
for similar unsupervised setups. The blind spot task for estimating
user distance (2.5.2) tackles the complex problem of monocular
depth estimation from a single webcam, providing a simple and
reliable alternative to computer vision-based approaches.

With respect to gaze calibration, we show that pooling cali-
bration data collected at multiple time points, and using multiple
calibration methods, proved to be the best gaze prediction strat-
egy, as compared to re-calibrating at each time point–the standard
practice in eye-tracking studies. It is not the temporal relation be-
tween calibration and data collection that makes the additional

blocks important, as shown by the missing benefit of Blockwise
calibration, but rather the increased amount of data. Similarly, the
increased amount of data and sampled screen locations that come
with pooling both fixation and smooth pursuit calibration strate-
gies resulted in better gaze prediction. It is interesting to note that
a single trial of the fix-point calibration task took on average 14
seconds and collected 160 data points, while a single trial of the
smooth-pursuit calibration took around 25 seconds to complete
and collected 433 data points on average. Therefore, the total time
spent for the two calibration tasks by each participant was less
than 2 minutes (the total study time was around 35 minutes with-
out any breaks), which is significantly less than previous online
eye-tracking procedures where calibration took almost 50% of the
study time [Semmelmann andWeigelt, 2018]. This demonstrates the
efficiency of deep learning networks in real-world noisy environ-
ments; they are less susceptible to over-time gaze prediction drifts
commonly experienced in eye-tracking studies and overcome the
design restrictions of short trials and frequent calibrations adopted
in previous studies to deal with such issues [Xu et al., 2015].

From the results of the fixation task, it could be descriptively
seen that the FAZE model reports the best accuracy for all condi-
tions followed by ETHXGaze and then by MPIIGaze, though these
effects were not statistically significant (comparing MPIIGaze and
FAZE, mean fixation accuracy dropped from 3.63° deviation to 2.58°
(Beg+Mid+End)). However, note that our target sample size for
between-model comparisons is higher (n = 64) than the sample
size used in this report (n = 41), and data collection is still ongo-
ing (see addendum in Saxena et al. [2021]). Also, the effect sizes
(η2) were of rather medium size for the main effect of the factor
model in all three ANOVAs, indicating that it might be wise to
wait for final data collection before drawing firm conclusions on
the between-model comparisons. Also note that the fine-tuning
procedure for FAZE was deactivated to keep the inference steps
consistent (see section 2.4). The final accuracy of predictions after
personalized fine-tuning is, therefore, expected to further improve
the gaze predictions (forthcoming paper in preparation). Addition-
ally, the prediction accuracy may also be dependent on the type of
eye movement being analyzed. Therefore, our planned thorough
investigation of these model predictions under different task set-
tings (smooth pursuit, free view, fixation etc.) will help to elucidate
the applicability of these models further.

The performance of FAZE demonstrates the effectiveness of
highly parameterized networks for the task of gaze prediction,
since FAZE applies a more sophisticated DenseNet based encoder-
decoder model as compared to the ResNet and AlexNet-based archi-
tectures applied in ETHXGaze andMPIIGaze. However, the increase
in accuracy comes at a higher computational expense. The FAZE
model takes considerably more time and memory, which should be
considered before choosing models for similar studies. For instance,
inferencing a single frame (640*480 resolution) on our setup enabled
with NVIDIA Titan RTX GPU took nearly, 50 ms for MPIIGaze, 200
ms for ETHXGaze, and 350 ms for FAZE. Nonetheless, researchers
who are interested in fixation accuracies - using tasks analogous
to our fixation task - would therefore benefit from a similar offline
processing setup as compared to a real-time setup with light-weight
regression models. Overall, the current results motivate further de-
velopment of deep learning-based methods for gaze-tracking and
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highlight a useful application of these models for researchers who
wish to conduct online studies.
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